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Abstract

Reference flow uses a two-pass strategy that identifies am-

biguous read alignments in the first pass and re-aligns them to

population-specific alternative genomes. Relative to the gain

from personalization, reference flow improves 86% in read map-

ping sensitivity and reducing 56% of highly biased sites. It is 5.6x

faster and uses 0.12x less memory than a graph aligner.

Reference flow: a multi-pass alignment
framework enabled by read selection
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- First-pass: major allele reference is the “centroid” of population

- Second-pass: population-specific reference genomes. Stochas-

tic update increases variant diversity and improves performance

- Selection: empirically decided mapping quality cutoff can “com-

mit” 80+% reads at whole human genome scale
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Reference flow can be generalized to draft assemblies, or com-

bined with other pan-genome-based aligners

Data

2504 samples from the Phase 3 1000 Genomes Project [1] were

processed as follows:

- All samples were used to build the global major allele genome

and population-specific genomes

- Personalized genomes were constructed for 100 random indi-

viduals; Mason 2 [3] was used for reads simulation

Deeply sequenced real reads for NA12878 (SRR622457) were

used for the real data experiment
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More accurate read mapping than vg [2]
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- Major allele reference is a more effective single-haplotype ref-

erence in terms of read mapping sensitivity (35.6% GOP)

- Reference flow further improves alignment by integrating mul-

tiple population-specific genomes (86.4% GOP)

Reference flow reduces allelic bias
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- Major allele reference is limited in reducing allelic bias

- Reference flow recovers 55.9% GOP (haplotype to haplotype)

- Personalized (haplotype to haplotype) aligns reads from each

haplotype separately and reduces cross-mapping bias

Reference flow reduces bias for real reads
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- Reference flow can reduce bias when real reads are used

- Even personalized is still slightly in favor of the reference alleles

Reference flow is computationally efficient
Method Index size Memory usage CPU time

Bowtie2-GRCh37 3.6G 3.5G 1x (54m)

vg∗ 19.6G 26.9G 13.59x (734m)

Reference flow 21.6G 3.3G 2.42x (131m)

- 10M randomly sampled 101-bp real reads are aligned to whole

human genome using 16 threads

* Reads are aligned to GRCh38 with allele frequency > 0.1 vari-

ants using vg (we were unable to index vg using GRCh37)

Read bias and allelic bias
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- 20M reads are simulated using NA12878 chr21 data

- HapDepleted: reads from one haplotype are mis-mapped

- HighQ: high MAPQ alignments with balanced read assignment

- LowQ: low MAPQ alignments with balanced read assignment

- Unsupervised analysis achieves high correlation without

synthetic information. Pearson correlation (p-value): 0.99

(0.007)/0.75 (0.254)/0.99 (0.013) for HapDep./HighQ/LowQ

- Can be further applied for real data analysis

Comparison Metrics

- Gain Of Personalization (GOP)(x)
≡ (x − xGRCh37)/(xpersonalized − xGRCh37)

Mapping accuracy measurement

- Sensitivity ≡ |posmapped − possimulation| ≤ 10-bp
Allelic bias measurement

- Only bi-allelic heterozygous SNV sites are considered

- Bias ≡ REF/(REF+ALT+others)
- Biased Site ≡ (Bias ≥ 0.8) ∨ (Bias ≤ 0.2)
- Ratio REF to ALT ≡

∑
REF/

∑
ALT


