
A Memory-Efficient FM-Index Constructor for
Next-Generation Sequencing Applications on

FPGAs
Nae-Chyun Chen, Yu-Cheng Li and Yi-Chang Lu

Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan, 10617
Email: r04943093@ntu.edu.tw, d01943008@ntu.edu.tw, yiclu@ntu.edu.tw

Abstract—FM-index is an efficient data structure for string
search and is widely used in next-generation sequencing (NGS)
applications such as sequence alignment and de novo assembly.
Recently, FM-indexing is even performed down to the read
level, raising a demand of an efficient algorithm for FM-index
construction. In this work, we propose a hardware-compatible
Self-Aided Incremental Indexing (SAII) algorithm and its hard-
ware architecture. This novel algorithm builds FM-index with
no memory overhead, and the hardware system for realizing
the algorithm can be very compact. Parallel architecture and a
special prefetch controller is designed to enhance computational
efficiency. An SAII-based FM-index constructor is implemented
on an Altera Stratix V FPGA board. The presented constructor
can support DNA sequences of sizes up to 131,072-bp, which
is enough for small-scale references and reads obtained from
current major platforms. Because the proposed constructor needs
very few hardware resource, it can be easily integrated into
different hardware accelerators designed for FM-index-based
applications.

Keywords-next-generation sequencing, FM-index, Burrows-
Wheeler transform, self-aided index construction

I. INTRODUCTION

Burrows-Wheeler transform (BWT) [1] is a string rearrange-
ment algorithm first proposed for data compression. Making
use of the properties between BWT and its original string,
FM-index [2] is designed for efficient string searching. For
a certain string, the data structure of its FM-index contains
the BWT, the suffix array (SA) and two auxiliary tables of
the target string. With its high efficiency in both time and
memory, FM-index is widely adopted by many next-generation
sequencing (NGS) applications [3], [4], [5], [6].

For FM-index-based sequence aligners such as BWA-
backtrack [3] and Bowtie2 [5], the reference sequence is
indexed for fast read-locating processes. For this kind of
aligners, because only the reference sequence needs to be
indexed, the hardware accelerators ([7], [8]) usually build
the FM-index externally using CPUs. Since the length of a
reference sequence can be as large as three billion base pairs
(bps), the memory usage of naive index constructing method
is unaffordable. Therefore, how to reduce memory usage in
FM-indexing becomes an important issue [9], [10].

Recently, some de novo assemblers ([6], for example) apply
FM-index for overlap finding of reads. Also, the reference
and reads are both indexed in new sequence aligners such
as BWA-SW [4]. For these applications, external construction

of FM-index has much higher time overhead in comparison
with traditional algorithms. Therefore, on-chip indexing be-
comes necessary and important. Our previous research [11]
has demonstrated an FM-index constructor with a lightweight
iterative algorithm [10] with an ASIC, but the cost of the
indexer is still high when compared to the work proposed
here.

In this work, we propose a novel memory efficient FM-
index construction algorithm, Self-Aided Incremental Indexing
(SAII), which is suitable for hardware realization. This algo-
rithm builds the FM-index incrementally. In each iteration, it
utilizes a meta-index to construct the complete index. Since
SAII makes use of the FM-index itself for construction, it has
no memory overhead for FM-index-based applications. Only
few computational logic units are needed. In our hardware
system, the processing speed is accelerated by a special
prefetch mechanism and a parallel architecture. We choose
Altera Stratix V FPGA as the evaluation platform. The SAII
FM-index constructor is very compact in terms of logic usage,
so it can be integrated with other functional blocks to form a
complete hardware pipeline in emerging NGS applications.

II. BACKGROUND

A. Burrows-Wheeler Transform

To construct the BWT of target sequence X , a simple
method is via the translation of suffix array (SA) with Eq. 1.
Also, BWT can be obtained by collecting all characters in the
last column of sorted suffixes. Fig. 1 shows an example of the
BWT of sequence X=ACGATTG$, where character $ is the
end-of-string character. The lexical order is $<A<C<G<T.

BWT [i] =

!
X[SA[i]− 1] if SA[i] > 0

$ if SA[i] = 0
(1)

B. FM-index and Backward Search Algorithm

FM-index is extended from BWT and suffix array, with two
auxiliary tables—C array and O table. The definitions for C
array and O table are shown in Eq. 2 and 3, where n is the
length of target sequence X .

C(a) ≡ size{0 ≤ j ≤ n− 2 : X[j] < a} (2)

0

2
1

0
0

2

1
0

2
2
2
2
1
1

2

1
0
0

2

1

0

1

0

0

1

0

1

TGCA

1

1

1

1

0$GTTCGCA
A$ C GTTCG

$GTTCGC A
$GTTC A GC

A$G GC C TT
G TC T $G CA
T GCA$G TC
T T GCA$G C

BWT

O table

10 2 76543
7
0
1
3
6
2
5
4

5310
TGCA

C arraySorted suffixes table

SA

Fig. 1. The FM-index of target string ACGCTTG$. This data structure
includes SA,BWT,C array and O table. BWT is the last column of the
sorted suffixes table.

O(a, i) ≡
!
size{0 ≤ j ≤ i : BWT [j] = a}, i ≥ 0.

0, otherwise.
(3)

With C array and O table, the position of query aW can
be efficiently located within a lower bound R(aW) and upper
bound R(aW) as shown in Eq. 4 and 5.

R(aW) = C(a) +O(a,R(W)− 1) + 1 (4)

R(aW) = C(a) +O(a,R(W)) (5)

In [2], Ferragina and Manzini have proved that R(aW) ≤
R(aW) if and only if aW is a substring of X . This searching
algorithm starts from the end of the query sequence and
extends iteratively. Therefore it is also called backward search
algorithm.

III. SELF-AIDED INCREMENTAL INDEXING (SAII)
ALGORITHM

An example of backward search algorithm is shown in
Fig. 2. The initial values {R(∅), R(∅)} are set at {0, n − 1}.
Here we discuss the mathematical insights of the lower bound
in backward search algorithm. R(aW) is the sum of C(a),
O(a,R(W) − 1) and 1. C(a) records the total number of
characters lexically smaller than a in target sequence X . The
O(a,R(W)−1) term is the occurrence of aW in X . With an
additional offset, R(aW) represents the suffix array index of
lexically smallest aW sequence. Similar concept can be used
to account for the upper bound. If aW only occurs once in
X , R(aW) is equal to R(aW). It is also of interest that what
would happen if aW is not a substring of X . Since R(aW)
measures the occurrences of lexically smaller substrings in X ,
the lower bound guarantees the following inequality:

suffixSA[R(aW)−1] < aW < suffixSA[R(aW)] (6)

SAII utilizes Eq. 6 to build FM-index incrementally. For
a target sequence X , if the FM-index of its substring L =
aiai+1...an−2$ has been constructed, the suffix array index
of the query string ai−1L = ai−1aiai+1...an−2$ can be
determined by calculating R(ai−1L). Since ai−1L could not
be a substring of L, the suffix array index obtained is unique

$CA
A$ G

GC A
TC G
$G T

G C C
T G T
T T C

BWT

0
1
2
3
4
5
6
7

SA index

C(T)=5

0+1
R(T)

R(T)

O(T,7)=2

O(T,0)=0

2

(a)

$CA
A$ G

GC A
TC G
$G T

G C C
T G T
T T C

BWT

0
1
2
3
4
5
6
7

SA index

C(C)=1

1+1
R(CT)

O(C,7)=2

O(C,5)=1

2
R(CT)

(b)

Fig. 2. An example of searching query sequence CT on indexed target string
X=ACGCTTG$. (a) and (b) show the first and second iteration respectively.

and follows Eq. 6. Therefore, we can insert ai−1 into the FM-
index of L, generating the new FM-index of ai−1L without
sorting the whole string all over again.

The algorithm of SAII is shown in Alg. 1, and an example
of a target sequence ACGCT$ is provided in Fig. 3. In the
first iteration, the initial character is $ and the BWT is also $.
The corresponding O table and R are calculated. In the second
iteration, a new character T is added to the target sequence.
Then we use O and C obtained in the previous iteration to
calculate the new R, and the updated $ is inserted to this R
position to form a new BWT . With this updated BWT , we
recalculate O and C for this iteration. Then SAII is ready
to move on to next iteration. After all the characters in the
target sequence are read, the corresponding FM-index of the
reference is correctly built.

Because the construction process is entirely based on FM-
index itself, nearly no extra computational resources are
needed and the memory overhead is zero for FM-index-
based applications. The time complexity of SAII algorithm
is O(n2k−1), where k is completeness of the O table. The
details of k is given in Sec. IV-B.

Algorithm 1 Self-Aided Incremental Indexing Algorithm
Require: target sequence X
Ensure: BWT , C array and O table

1: Initialize C array and O table
2: n ← length (X)
3: BWT ← $
4: q ← 0
5: for i from n− 2 to 0 do
6: BWT [q] ← X[i]
7: L ← X[i : n− 1]
8: q ← C(X[i]) +O(X[i], R(L)− 1) + 1
9: BWT ← BWT [0 : q − 1] + $ +BWT [q : n− 1]

10: Update C array with L
11: Update O table with BWT
12: end for

IV. HARDWARE IMPLEMENTATION AND DISCUSSION

A. Overall Architecture

The hardware system includes a finite-state machine con-
troller and a combinational computing logic. The finite-state

0/0/0/0 0/0/0/0

C O R

0+0+1=1

X

T$

CT$
0+0+1=1

GCT$
1+0+1=2

CGCT$
0+0+1=1

T$

BWT

T$C

TG$C

T$GCC

A/C/G/T A/C/G/T

$

0/0/0/1
0/0/0/1$

T

0/0/1/1 0/0/0/1
0/0/0/1
0/1/0/1

$
T

C

0/0/1/2 0/0/0/1
0/0/1/1
0/0/1/1
0/1/1/1

$

T

C

G

init:	$

0/0/0/0

init:	$
tim

el
in
e

init:	0

0/0/2/3 0/0/0/1
0/0/0/1
0/0/1/1
0/1/1/1
0/2/1/1

$
T

C
G

C

TC

TGC

T

TGCC

UpdateSearch
Insert

UpdateSearch
Insert

UpdateSearch
Insert

Update
Search

Insert

ACGCT$
0+0+1=1 T$AGCC

0/1/3/4 0/0/0/1
0/0/0/1

1/0/1/1
1/1/1/1
1/2/1/1

$
T

C
G

C

TAGCC Update
Search

Insert

1/0/0/1A

Fig. 3. An example of the FM-indexing of a target sequence ACGCT$ with
SAII algorithm.

machine of the proposed hardware is shown in Fig. 4. There
are four states in this system: Initial, Search, Update and Finish
states.

Initial and Finish states control the initial and finishing
conditions of the hardware. Search state computes the lower
bound R(aW) with Eq. 4. A two-stage parallel pop counter is
used in Search state for fast computing. Update State updates
the latest incoming symbol to the $ position in previous
iteration. Also, it inserts the $ symbol to the updated index
based on the position calculated in Search state. The whole
FM-index data structure including BWT , C array and O table
all need to be updated in this state. The finite-state machine
repeats between Search and Update states to construct the FM-
index and moves to Finish state after the last character of the
target sequence is processed.

B. Data Structure

For DNA aligners, the size of alphabets (Σ) is five (in-
cluding $). Since symbol $ occurs only once, in our hardware
system only A,C,G, and T are encoded. End-of-string character
$ is encoded the same as the symbol, A, and an additional
special pointer is designed to store the position of $. This
design uses only two bits for each character, which is only
67% in comparison to that of naive 3-bit encoding.

Initial

Search

Update
& Insert

Finish

if all inputs processed

1st stage
pop count

2nd stage
pop count

Finish
search

Fig. 4. The finite-state machine controlling the hardware system.

The memory usage of the three main components of FM-
index, C array, O table and BWT , are 4 log n, 4n log n and
2n, respectively. However, the length of genome sequence data
is sometimes very large. The length of a human chromosome
can exceed 200 Mbp and the whole human genome is more
than 3 Gbp. With this scale of data, the 4n log n memory usage
of a complete O table is very expensive in hardware systems.
It should be noted that O table is a hash table obtained from
BWT designed for fast computation of R and R. The correct
bounds can still be calculated even without O table at the cost
of searching efficiency.

In our hardware system, incomplete O table is used to
achieve balance between memory usage and computing speed.
An incomplete O table stores the occurrence values at every
k characters. It is k times smaller than a complete table. With
an incomplete O table, the calculation of O(a, i) is split into
two parts. First, O(a, k

"
i
k

#
) is stored in the incomplete table.

Second, the occurrences of a from k
"
i
k

#
to i is calculated

with a pop counter. In our hardware implementation, k is
set at 2,048. The pop counter is designed with a two-stage
architecture, in which the first stage has 32 parallel adders
and the second stage has 64 parallel adders. The incomplete
O table can be adjusted for different applications with simple
modification of parameters.

C. Constructing BWT with Prefetch Mechanism

In our hardware system, Search and Update states are in
charge of the construction of FM-index. To save computing
resource, BWT and O table are both segmented and stored in
the BRAM. Though this saves lots of area, it takes longer time
to update the BRAM due to the fixed word length. Therefore,
how to make use of the limited bandwidth is very important.
To address this issue, we design a prefetch mechanism that
saves 50% time of BRAM updating. The timing diagram
without prefetching is shown in Fig. 5(a). In Search state,
R is calculated; in Update state, the incoming character is
updated to the FM-index as shown in Line 6 in Alg. 1; in
Insert state, the $ is inserted to the FM-index, as shown in
Line 9 in Alg. 1. In both Update and Insert states, BWT and
O table in the BRAM have to be refreshed, so the processing
time is long.

Prefetch mechanism is designed to reduce the runtime to

SInitialize Insert $ Update 2

character 1 character 2

S Insert $ Update 3

character 3

S Insert $

(a)

Insert $S’ Update 2Initialize

character 1
Insert $S’ Update 2

Insert $S’ Update 2
Insert $S’ Update 2 S’

character 2 character 3 character 4 character 5

(b)

Fig. 5. Timing diagrams for: (a) constructing BWT without prefetch mechanism, and (b)
constructing BWT with prefetch mechanism. The blue boxes (S- and S’-boxes) denote Search
state. The S’-boxes contains the additional monitor. Fig. 6. Processing cycle count of SAII hardware system.

refresh BRAM. As shown in Fig. 3, SAII algorithm first
replaces the $ in BWT with the new character, calculates the
new insertion position of $ and inserts new $ to the BWT .
With prefetch mechanism, the insertion of $ is combined with
next Update state and executed after the hardware system
sees the next character. This does not generate the completely
correct FM-index yet because of its early update design.
Therefore, the early updated position and character have to
tracked with an additional monitor to make sure the calculation
of R is correct in the next iteration. In the last iteration, since
there is no more character for prefetching, the final FM-index
is correct. Fig. 5(b) shows the timing diagram of the hardware
system with prefetching.

Assume that one update takes q cycles and one backward
search takes m cycles (q >> m), prefetch mechanism reduces
the computing time from 2q +m to q +m for each iteration.
The computing time is nearly half of the original design. The
expected runtime (T) of the SAII hardware system is shown
in Eq. 7, where m stands for search time and is set to 3 cycles
in our implementation.

T = k

n
k$

i=1

(m+
i

2
) (7)

D. Discussion

We implement our SAII FM-index constructor on an Altera
Stratix V FPGA (5SGXEA7N2F45C2N) board. The hardware
system is synthesized using Altera Quartus (v.15.0) tool. It
only uses 21,944 ALMs (9%) and 266,496 BRAMs (< 1%)
on this FPGA. Also, the serial-input design uses a very
small proportion of the I/O bandwidth. These properties make
the SAII algorithm easily integrated into existing sequencing
pipelines at very low hardware cost.

The operation frequency can reach 120 MHz even with the
worst case model (900 mV, 85 ◦C). Sequences with different
lengths, from 16,384-bp to 131,072-bp, are tested and the
results are shown in Fig. 6. It takes about 21 ms to finish
the indexing of a 131,072-bp sequence. The runtime is very
close to our theoretical estimation given in Eq. 7. Even for
genomes with several million base pairs, it is estimated that
our system can construct the FM-index in seconds.

V. CONCLUSIONS

With many emerging applications based on FM-index, an
efficient index construction algorithm is needed. Previous al-
gorithms ([9], [10]) need additional working space to build the
index, raising the costs of hardware systems. In this paper, we
propose a novel hardware-compatible Self-Aided Incremental
Indexing (SAII) algorithm to construct FM-index with no
memory overhead. This algorithm is accelerated with a parallel
pop counter and a special prefetch mechanism. Its realization
on FPGA needs very few hardware resources and can be easily
integrated in different FM-index-based applications.

ACKNOWLEDGMENT

This work is supported by the Ministry of Science and
Technology, Taiwan, under Grant numbers MOST 105-2221-
E-002-090 and 106-2221-E-002-055. Nae-Chyun Chen would
like to thank NOVATEK for providing fellowship.

REFERENCES

[1] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compres-
sion algorithm,” 1994.

[2] P. Ferragina and G. Manzini, “Opportunistic data structures with appli-
cations,” in Foundations of Computer Science, 2000. Proceedings. 41st
Annual Symposium on. IEEE, 2000, pp. 390–398.

[3] H. Li and R. Durbin, “Fast and accurate short read alignment with
burrows–wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–
1760, 2009.

[4] ——, “Fast and accurate long-read alignment with burrows–wheeler
transform,” Bioinformatics, vol. 26, no. 5, pp. 589–595, 2010.

[5] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with
bowtie 2,” Nature methods, vol. 9, no. 4, pp. 357–359, 2012.

[6] J. T. Simpson and R. Durbin, “Efficient construction of an assembly
string graph using the fm-index,” Bioinformatics, vol. 26, no. 12, pp.
i367–i373, 2010.

[7] C. B. Olson, M. Kim, C. Clauson, B. Kogon, C. Ebeling, S. Hauck, and
W. L. Ruzzo, “Hardware acceleration of short read mapping,” in Field-
Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th
Annual International Symposium on. IEEE, 2012, pp. 161–168.

[8] H. M. Waidyasooriya and M. Hariyama, “Hardware-acceleration of
short-read alignment based on the burrows-wheeler transform,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 5, pp.
1358–1372, 2016.

[9] D. Okanohara and K. Sadakane, “A linear-time burrows-wheeler trans-
form using induced sorting.” in SPIRE, vol. 5721. Springer, 2009, pp.
90–101.

[10] P. Ferragina, T. Gagie, and G. Manzini, “Lightweight data indexing and
compression in external memory,” Algorithmica, vol. 63, no. 3, pp. 707–
730, 2012.

[11] N.-C. Chen, T.-Y. Chiu, Y.-C. Li, Y.-C. Chien, and Y.-C. Lu, “Power
efficient special processor design for burrows-wheeler-transform-based
short read sequence alignment,” in Biomedical Circuits and Systems
Conference (BioCAS), 2015 IEEE. IEEE, 2015, pp. 1–4.

